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The effects of the ambient fluid on granular flow dynamics are poorly understood
and commonly ignored in analyses. In this article, we characterize and quantify these
effects by combining theoretical and experimental analyses. Starting with the mixture
theory, we derive a set of two-phase continuum equations for studying a compressible
granular flow composed of homogenous solid particles and a Newtonian ambient
fluid. The role of the ambient fluid is then investigated by studying the collapse and
spreading of two-dimensional granular columns in air or water, for different solid
particle sizes and column aspect (height to length) ratios, in which the front speed is
used to describe the flow. The combined analysis of experimental measurements and
numerical solutions shows that the dynamics of the solid phase cannot be explained
if the hydrodynamic fluid pressure and the drag interactions are not included in the
analysis. For instance, hydrodynamic fluid pressure can hold the reduced weight of
the solids, thus inducing a transition from dense-compacted to dense-suspended
granular flows, whereas drag forces counteract the solids movement, especially
within the near-wall viscous layer. We conclude that in order to obtain a realistic
representation of gravitational granular flow dynamics, the ambient fluid cannot be
neglected.

1. Introduction
Gravitational granular flows are common in nature. Typical geophysical examples

include debris avalanches, pyroclastic flows, landslides, cliff collapses and submarine
avalanches. As the dynamics of these flows involve different aspects of fluid
mechanics, plasticity theory, solid mechanics and rheology (Wang & Hutter 2001),
the combination of experimental and theoretical studies, as well as field observations
and numerical simulations, is often required for their understanding (Ancey 2007).
Although in specific cases our knowledge of the dynamics of granular flows has greatly
improved (Goldhirsch 2003), so far no widely accepted set of governing equations
exists.

A granular flow can be studied by considering the particular dynamics of at least
two constituents: the ambient viscous fluid and the solid phase. Therefore, in order
to describe the dynamics of the solid phase, the role of the ambient fluid should be
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taken into account (Iverson 1997; Iverson & Denlinger 2001). In spite of this, one of
the first works considering the interstitial fluid dynamics is the recent two-fluid model
of Pitman & Le (2005), which is based on the early studies of Anderson & Jackson
(1967). In fact, most studies on granular flows commonly ignore the presence of the
fluid phase (e.g. Hutter, Wang & Pudasaini 2005; Campbell 2006). This is justified by
the facts (i) that the solid particles are much denser than the ambient fluid, so that the
analysis is based only on interactions among particles (Campbell 1990; Goldhirsch
2003); or (ii) that the bulk density of the solid phase remains constant during rapid
granular motion, thus neglecting the compressible nature of the granular flows because
of dilatation and compaction of the flow during acceleration and deceleration stages,
respectively (Hutter et al. 2005).

The role of the ambient fluid can be investigated through a two-phase continuum
model, considering the respective relationships that describe the interactions between
the constituents (Drew 1983). Two different continuum theories can be followed:
the mixture theory (Truesdell 1957) and the phase-averaged theory (Anderson &
Jackson 1967). The mixture theory was formulated for studying the dynamics of
mixtures of gases, through a generalization of basis and principles of continuous
mechanics. The key abstraction in this theory is that, at any time, every
point in space is occupied simultaneously by one particle of each constituent
(Truesdell 1984). In order to derive a similar approach for fluid–solid mixtures,
immiscibility of the constituents was considered by introducing the volume fraction
of the components as additional kinematic variables (e.g. Bedford 1983; Passman,
Nunziato & Walsh 1984). On the other hand, the phase-averaged formulation is
based on an average of the mass and momentum balance laws for fluid and solid
constituents over time or volume (Anderson & Jackson 1967; Drew 1983). Even
if both theories allow the study of the dynamics of fluid–solid mixtures, they give
different representations of the constitutive relations (Joseph & Lundgren 1990). A
major challenge is to unify both theories and obtain a unique set of governing
equations.

The purpose of the present paper is to improve the understanding of the role
of the ambient viscous fluid on the dynamics of gravitational granular flows. In
this context, we propose and validate a set of two-phase continuum equations for
studying a granular flow composed of homogenous solid particles and a Newtonian
ambient fluid. These governing equations are derived based on fundamental principles
of the mixture theory and have two important characteristics: they consider the
compressible nature of a granular flow and they are able to dynamically create
interfaces. With this set of governing equations, the role of the ambient viscous
fluid on the dynamics of gravitational granular flows is analysed experimentally and
numerically for the collapse and spreading of a two-dimensional granular column in
air or water, for different solid particle sizes and column aspect (height to length)
ratios. We have chosen this particular configuration because it has widely been
studied, it is characterized by an unsteady behaviour with a transition between static
and flowing states and it represents an ideal case to validate the non-hydrostatic
model (e.g. Balmforth & Kerswell 2005; Lajeunesse, Monnier & Homsy 2005; Lube
et al. 2005; Staron & Hinch 2005; Larrieu, Staron & Hinch 2006).

This article is organized as follows. In § 2, the derivation of the governing equations
is detailed. The experimental and numerical methods for the collapse and spreading
of a two-dimensional granular column are described in § 3. The results are presented
in § 4, in which we show that the ambient fluid modifies the granular flow dynamics
via hydrodynamic fluid pressure and drag interactions. Finally, in § 5 we discuss the
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results and show that in order to obtain a realistic representation of granular flow
dynamics, the ambient fluid cannot be neglected.

2. Governing equations
2.1. Mixture theory framework

The mixture theory framework formulated for constituents with microstructure
(Truesdell 1984) is used here to obtain the two-phase governing equations for a
gravitational granular flow consisting of homogenous solid particles and a Newtonian
ambient fluid.

Starting with this approach, we consider a fluid–solid mixture with both phases
described as a continuum; that is, it is assumed that all the space xi is filled
simultaneously by particles of each phase at any time t . In order to identify the
components of the mixture, the sub-index n= s, f is used for solid and fluid phases,
respectively. The mixture occupies a reference volume V , large compared with the
particle size, and the phase n occupies a volume Vn within V , such as V = Vs + Vf .
Each phase has a material density γn, a velocity uni and a volumetric concentration
cn. The partial density is defined as ρn ≡ cnγn.

Because there is no mass transfer between phases, the mass and momentum
conservation equations for each phase are written as (Truesdell 1984)

∂ρn

∂t
+

∂(ρnuni)

∂xi

= 0, (2.1)

∂ρnuni

∂t
+

∂(ρnunjuni)

∂xj

= ρnfni +
∂Tnij

∂xj

+ m̂ni, (2.2)

where fni represents the body forces acting on the phase n in the ith direction, Tnij

denotes the partial stress tensor of the phase n and m̂ni represents the reciprocal
forces between the phases in the ith direction, such as m̂si = − m̂f i .

Constitutive relations for the interaction forces between the phases, as well as
the stress tensor for each phase, are required to close the mathematical system of
equations formed by (2.1) and (2.2), as discussed below.

2.2. Constitutive relation for the interaction force

As the constituents of a fluid–solid mixture remain physically separated in the space,
the interaction force between the constituents is identified as superficial forces acting
on a singular surface that separates the phases (Bedford 1983; Drew 1983; Morland &
Sellers 2001). In order to obtain the mathematical representation of the constitutive
equation from the integral balance laws of momentum, we identify this singular
surface as the border ∂Vs of Vs on which a tensor of interaction surface forces
T̂sij = − T̂f ij acts. Considering this, the integral balance laws of momentum for the
case of solid particles in a gravitational field are expressed as∫

V

{
∂ρsusi

∂t
+

∂(ρsusjusi)

∂xj

}
dV =

∫
V

{
ρsgi +

∂Tsij

∂xj

}
dV +

∫
∂Vs

T̂sijnj dS. (2.3)

Applying the divergence theorem on the last term of (2.3), and since dVs = csdV ,
then ∫

∂Vs

T̂sijnj dS =

∫
Vs

∂T̂sij

∂xj

dVs =

∫
V

cs

∂T̂sij

∂xj

dV. (2.4)
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Defining T̂sij as the sum of a compression part −p̂sδij and a shear stress part τ̂sij ,
so

T̂sij = −p̂sδij + τ̂sij , (2.5)

where δij denotes the delta Kronecker function, (2.3) is then written as

∂ρsusi

∂t
+

∂(ρsusjusi)

∂xj

= ρsgi +
∂Tsij

∂xj

− cs

∂p̂s

∂xi

+ cs

∂τ̂sij

∂xj

. (2.6)

Hence, the interaction force between the fluid and the solids in the momentum
equations (2.2) is identified as

m̂si = −m̂f i = −cs

∂p̂s

∂xi

+ cs

∂τ̂sij

∂xj

. (2.7)

The normal stress component in (2.7), p̂s , arises from the saturation constraint, that
is, cs + cf =1, and it specifies how one phase transmits forces to another keeping the
contact between the phases (Passman et al. 1984). Although this surface pressure was
identified in early studies on two-phase flows (Bedford 1983), so far no agreement
exists on the specific form of this part of the constitutive equation (Joseph & Lundgren
1990). Most works have considered an equal pressure for all phases and then for the
interface pressure (e.g. Drew 1983; Morland 1992), but later investigations have
shown that this assumption is not physically possible (e.g. Jackson 2000; Morland &
Sellers 2001). For instance, equal pressure assumption forces to define the partial
pressure of each phase as pn = cnp, where p =ps + pf is the pressure of the mixture.
Under these circumstances, unphysical forces arise in the fluid phase given by volume
concentration gradients, particularly under rest conditions, and an extra term, p∂xi

cf ,
has to be included in order to obtain the correct force balance. We will analyse two
simple cases in order to postulate that the interface pressure is the pressure of the fluid
phase, and the correct mathematical representation for this interaction is presented
in (2.7).

Let us consider first the static situation of a reservoir filled by solid particles with
an interstitial fluid. The reduced weight of the solid particles is sustained by direct
contacts among particles, identified here as the solid pressure ps , and at places where
no direct contact occurs the normal stress is the pressure of the surrounding fluid pf .
That is, the pressure of the fluid is sustained by both fluid and solid phases, while the
reduced weight of the solids is sustained only by direct contacts among solid particles.
Therefore, and in agreement with the Archimedes’ principle, the interstitial fluid force
balance is described between the equivalent weight of the fluid over the total mixture
volume and the fluid pressure gradient, i.e. ∂xi

pf = γf g. Second, let us consider the
dynamic case of solid particles falling down within a wide reservoir filled with a fluid,
for instance water. We conducted laboratory tests by measuring the weight of such
reservoir on a weigh scale and these revealed that while the particles were falling
down, without touching the walls of the reservoir, the scale recorded the equivalent
weight of water occupying the total volume of mixture, i.e. γf (Vf + Vs)g, and only
once the particles impacted the bottom of the reservoir, the balance recorded the total
weight of the fluid–particles system, i.e. (γf Vf +γsVs)g. This second experiment shows
the same fact described for the static case, that is, the reduced weight of the solid
particles is not transmitted through the ambient fluid, so that different measurements
will be recorded in the weigh scale depending on whether the particles are falling
down or are resting on the bottom. These two simple analyses allow us to postulate
that the interface pressure in (2.7) is the pressure of the fluid phase, pf , i.e. p̂s = pf .
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Thus, the normal interaction force is −cs∂xi
pf , which can be identified as a buoyancy

force, that is, it is the surface pressure exerted across the surface of the solids because
of the surrounding fluid.

The last term of (2.7) arises from the stresses induced by the fluid when it passes
through the interstices between the particles (e.g. Anderson & Jackson 1967). These
stresses are well identified considering the fluidization of a bed of particles at rest,
in which a uniform upward fluid flow generates a drag force that counteracts the
gravitational force (Sundaresan 2003). Although, as in the case of one solid particle
immersed in a fluid, other effects arise because of the fluid–solid interactions, such
as virtual mass effects and Basset force (Drew 1983), we consider only the total drag
force, which can be written as (e.g. Di Felice 1995; Jackson 2000)

cs

∂τ̂sij

∂xj

= (1 − δij )K(uf i − usi), (2.8)

where K is a well-constrained phenomenological drag function (see Di Felice 1995
and references therein). Thus, (2.7) has the final frame indifferent form:

m̂si = −m̂f i = −cs

∂pf

∂xi

+ K(uf i − usi). (2.9)

The drag function, K , is usually obtained through a generalization of the drag force
for a single particle by introducing a voidage function, f (cf ), such as (Di Felice 1995)

K =
3

4
CD

γf

ds

|u f − us|csf (cf ), (2.10)

where ds is the diameter of the solid particles and CD is the drag coefficient given by
Dallavalle (1948) as

CD =

(
0.63 +

4.8√
Red

)2

, (2.11)

where Red is a modified particle Reynolds number, defined as Red = ρf ds |u f −
us|/μf = cf ds |u f − us|/νf , where μf and νf are the dynamic and kinematic viscosity
of the fluid phase, respectively. The most common form for the voidage function
is f (cf ) = c

2−β
f , with β as a coefficient with values ranging from 3.6 to 3.7 for the

viscous and inertial flow regimes, respectively (Di Felice 1994). We use the coefficient
proposed by Di Felice (1994) that fits empirically the two regimes as

β = 3.7 − 0.65exp

[
− (1.5 − log(Red))

2

2

]
. (2.12)

2.3. Stress tensor of the fluid phase

Assuming that the state variables of the governing equation are mean quantities
obtained by a Reynolds (1895) average of the equations and using the eddy viscosity
concept proposed by Boussinesq (1877) as a model for turbulent fluctuations, the
stress tensor for the fluid phase can be written as (Rodi 1983)

Tf ij = −pf δij + (μf + μT )

(
∂uf i

∂xj

+
∂ufj

∂xi

)
, (2.13)

where μT is the turbulent or eddy viscosity because of the velocity fluctuations
from the mean flow. This eddy viscosity for the case of fluid-particles flows is more
complicated than that for the case of pure fluid flows, because the solid particles
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modify the structure and intensity of the fluid turbulence, thus altering the transport
rate of momentum (Elghobashi & Truesdell 1993). For instance, any slip between
phases generates boundary layers around individual particles.

Although there are no general turbulent closures for the fluid phase in the case
of two-phase flows, this issue is currently solved by including a source term in the
kinetic energy equation of the fluid phase, which represents the irreversible work on
the fluid associated with the drag force on the particles (Crowe, Troutt & Chung
1996). Following Crowe (2000), we propose a standard turbulence energy-dissipation
model for the turbulence of the fluid phase (k − ε model; Rodi 1983), which includes
the work done by the drag force as a production term in both k and ε equations.
Then, the set of k − ε equations is written as

μT = ρf cμ

k2

ε
, (2.14)

∂(ρf k)

∂t
+

∂(ρf uf ik)

∂xi

=
∂

∂xi

(
μT

σk

∂k

∂xi

)
+ μT

(
∂uf i

∂xj

+
∂ufj

∂xi

)
∂uf i

∂xj

+ K |u f − us|2 − ρf ε, (2.15)

∂(ρf ε)

∂t
+

∂(ρf uf iε)

∂xi

= c1ε

ε

k

[
μT

(
∂uf i

∂xj

+
∂ufj

∂xi

)
∂uf i

∂xj

+ K |u f − us|2
]

+
∂

∂xi

(
μT

σε

∂ε

∂xi

)
− c2ερf

ε2

k
, (2.16)

where k is the kinetic energy of the fluid turbulent motion, and ε is the dissipation
rate of k. The values of the constants in (2.14)–(2.16) are taken equal to the standard
values for a pure fluid: cμ =0.09, c1ε = 1.44, c2ε = 1.92, σk = 1.00 and σε = 1.30 (Rodi
1983; Pope 2000).

2.4. Stress tensor of the solid phase

The stress tensor of the solid particles represents the forces transmitted by direct
inter-particle contacts. These forces are well known for two opposite regimes of
the granular flow. On the one hand, the dilute and rapid granular flow regime in
which the particles interact by binary collisions (Campbell 1990; Goldhirsch 2003),
and on the other hand, the dense quasi-static regime in which the onset of the
flow is determined by the Mohr–Coulomb condition (Hutter et al. 2005). However,
the constitutive equation for the intermediate regime in which both collisional and
frictional interactions might be important is not well known (Forterre & Pouliquen
2008). In order to take into account these three regimes, we will follow the assumption
of Savage (1983) and Johnson & Jackson (1987), who proposed that the stress tensor
of the solid particles is represented by the linear sum of a rate-independent quasi-static
part, T s

sij , and a rate-dependent collisional part, T c
sij , such as

Tsij = T s
sij + T c

sij . (2.17)

The rate-independent quasi-static part, T s
sij , can be decomposed as

T s
sij = −psδij + τsij , (2.18)

where ps is the solid pressure (assumed isotropic) and τsij is the solid shear stress
tensor. We define the solid pressure as the reaction force that arises in response to the
constraint of incompressibility when the solid particles are packed, which in the static
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case can be interpreted as the fraction of the weight of the solids that is sustained by
direct contacts among solid particles or at boundaries. Accordingly, the solid pressure
can be written as

ps(cs) =

{
ps cs � co,

0 cs < co,
(2.19)

where co is the loose packing concentration defined as the lowest stable packing of
particles. Mathematically, the inclusion of the closure (2.19) means that one of the
two variables, cs or ps , will be constant depending on whether the flow is packed
or not. When the granular flow is packed, i.e. when it is incompressible, the solid
density ρs is constant; in contrast, when the granular flow is unpacked, i.e. when it is
compressible, ps is equal to zero. In fact, this model ensures that once the granular
flow is unpacked, the maximum concentration that it can acquire is the loose packing
value.

The quasi-static solid shear stress tensor, τsij , is represented by the Mohr–Coulomb
condition, which states that the compressible and shear stresses acting in a particular
plane over a particular point are related by (e.g. Goodman & Cowin 1971)

|τsij | = (1 − δij )|ps |tanϕ, (2.20)

where ϕ is the internal friction angle. Note that because of the closure of (2.19), the
solid shear stress also vanishes when the flow is unpacked.

The rate-dependent collisional part, T c
sij , on the other hand, arises in a rapid sheared

flow in which each particle has a random fluctuation of the velocity respect to the
mean flow. As this random motion arises from particles collisions, the granular flow
is represented in a similar way as the thermal motion of molecules in the kinetic
theory of gases, considering additionally the energy loss because of inelastic collisions
(Campbell 1990; Goldhirsch 2003). We use the kinetic theory proposed by Jenkins &
Savage (1983), in which the collisional stress tensor can be written as

T c
sij = −pcδij + 2μcγ̇sij , (2.21)

where γ̇sij =(∂xj
usi + ∂xi

usj ) is the shear rate tensor, pc = γsf1(cs, e)T is the collisional

pressure, μc = γsdsf2(cs, e)
√

T is the collisional viscosity, with T = 〈u′2
si〉/3 the granular

temperature, where u′
si is the instantaneous deviation from the mean velocity and 〈〉

represents an ensemble average. In this model, the parameterizations f1(cs, e) and
f2(cs, e) are equal to

f1(cs, e) = 2c2
s (1 + e)go(cs), f2(cs, e) =

2

5
√

π
c2
s (2 + α)(1 + e)go(cs), (2.22)

where e is the coefficient of restitution, α is a parameter equal to one as Lun, Savage &
Jeffrey (1984) suggested, and go(cs) is the radial distribution function. We use the
function proposed by Lun et al. (1984) that is implicit in the work of Bagnold (1954)

go(cs) =

[
1 −

(
cs

cM

)1/3
]−1

, (2.23)

where cM is the dense packing concentration equal to 0.64 for spheres (Lun et al.
1984). Finally, we relate this model with our representation through the relation
between the shear rate and the granular temperature S = dsγ̇sT

−1/2, for which S ≈ 1
in most of the range of the solid concentration (Campbell 2006), so that we consider

T = (dsγ̇s)
2, (2.24)
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where γ̇s =
√

1/2|γ̇ 2
sii − γ̇sij γ̇sji | is the root of the second invariant of the shear rate

tensor.

2.5. Dimensionless form of the governing equations

The final system of governing equations is represented by

∂ρn

∂t
+

∂(ρnuni)

∂xi

= 0, n = s, f, (2.25)

∂ρsusi

∂t
+

∂(ρsusjusi)

∂xj

= ρsgi − ∂ps

∂xi

+ sij

∂ps

∂xj

tanϕ +
∂

∂xj

[
μc

(
∂usi

∂xj

+
∂usj

∂xi

)]
− ∂pc

∂xi

− cs

∂pf

∂xi

+ K(uf i − usi), (2.26)

∂ρf uf i

∂t
+

∂(ρf ufjuf i)

∂xj

= ρf gi − cf

∂pf

∂xi

+
∂

∂xj

[
(μf + μT )

(
∂uf i

∂xj

+
∂ufj

∂xi

)]
− K(uf i − usi), (2.27)

where sij ≡ sgn(∂xj
usi). This system of equations is closed with the saturation constraint

cs + cf = 1, and (2.10)–(2.12), (2.14)–(2.16), (2.19), (2.22)–(2.24). We use the governing
equations for studying the collapse of a two-dimensional granular column in a
viscous fluid. Previous experimental studies in air (e.g. Lajeunesse et al. 2005; Lube
et al. 2005) have established that the characteristic time scale is

√
ho/g, independent

of the properties of the granular material (grain size, roughness and shape) and of the
initial column aspect ratio ho/xo, where ho and xo are the initial height and length,
respectively. As we also apply the equations in cases in which water is the ambient
fluid, we define to =

√
ho/g′ as the characteristic time scale, where g′ = (γs − γf )/γsg

is the reduced gravity. On the other hand, the traditional dam-break problem for
flows of water indicates that the characteristic horizontal velocity scale is the gravity
wave celerity uo =

√
g′ho (Kármán 1940), so that the characteristic horizontal length

scale is ∼ uoto ∼ ho. In order to have each term of the same order in the conservation
of mass equation, uo and ho are also chosen as scales for both vertical velocity and
length. Using the loose packing density of the solids, coγs , and the material density of
the fluid, γf , as density scales, the following dimensionless variables are obtained:

t̃ =
t

to
, x̃i =

xi

ho

, ũni =
uni

uo

, ρ̃f =
ρf

γf

, ρ̃s =
ρs

coγs

, p̃s =
ps

coγsu2
o

,

p̃c =
pc

coγsu2
o

, p̃f =
pf

γf u2
o

, k̃ =
k

u2
o

, ε̃ =
ε

u2
o

, T̃ =
T

u2
o

,

⎫⎪⎬⎪⎭ (2.28)

where x1 = x, x2 = y are the horizontal and vertical directions, respectively, and ∼
denotes scaled variables. Substitution of these variables in the conservation of mass
(2.25), and momentum equations (2.26) and (2.27) leads to

∂ρ̃n

∂t̃
+

∂(ρ̃nũni)

∂x̃i

= 0, n = s, f (2.29)

∂ρ̃sũsi

∂ t̃
+

∂(ρ̃s ũsj ũsi)

∂x̃j

= ρ̃s

gi

g′ − ∂p̃s

∂x̃i

+ sij

∂p̃s

∂x̃j

tanϕ +
∂

∂x̃j

[
1

Rec

(
∂ũsi

∂x̃j

+
∂ũsj

∂x̃i

)]
− ∂p̃c

∂x̃i

− De
cs

co

∂p̃f

∂x̃i

+

√
De

Ar

ho

ds

K̃

co

(ũf i − ũsi), (2.30)
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γf νf ds

Set (kgm−3) (×10−5 m2 s−1) (×10−3 m)

1 1.2 1.7 3.0
2 1.2 1.7 0.7
3 1.2 1.7 0.2
4 1000 0.1 3.0
5 1000 0.1 0.7
6 1000 0.1 0.2

Table 1. Mean values of material properties and boundary conditions for laboratory
and numerical experiments. For each set: γs = 2.5×103 kgm−3, co = 0.6, e = 0.95, ϕ = 26o,
xo = 0.1 m for ho/xo ∈ [1, 4.5], xo = 0.05 m for ho/xo ∈ [5, 16], Δx = Δy = 7.14 × 10−3 m, and
Δt = 2.5 × 10−3 s.

De

co

[
∂ρ̃f ũf i

∂ t̃
+

∂(ρ̃f ũfj ũf i)

∂x̃j

]
= ρ̃f

De

co

gi

g′ +
De

co

∂

∂x̃j

[
1

Ref

(
∂ũf i

∂x̃j

+
∂ũfj

∂x̃i

)]
− De

cf

co

∂p̃f

∂x̃i

−
√

De

Ar

ho

ds

K̃

co

(ũf i − ũsi), (2.31)

where K̃ = 3/4(0.63
√

Red + 4.8)2csc
1−β
f . The density number, De, the Archimedes

number, Ar , and the Reynolds numbers, Rec and Ref , are defined as

De =
γf

γs

, Ar =
(γs − γf )gd3

s

γf ν2
f

, Rec =
coγsho

√
g′ho

μc

, Ref =
γf ho

√
g′ho

μf + μT

. (2.32)

3. Methods
3.1. Experimental procedure

Experiments were conducted in a 1.5 m long perspex rectangular channel, 0.5 m deep
and 0.1 m wide, by suddenly opening a vertical gate that initially holds the granular
column of ho/xo ∈ [1, 8]. For each set of aspect ratios, we used glass beads of three
particle sizes (ds = 0.2, 0.7, 3.0 mm), and air or water as the ambient fluid (the depth
of water was 0.45 m), with a total of six sets of experiments listed in table 1.

The physical properties presented in table 1 correspond to the typical mean values of
the materials used at 20◦C, and we measured the loose packing volume concentration
(co = 0.6 ± 0.2) as well as the internal friction angle (ϕ =26 ± 3 deg). The loose
packing volume concentration was estimated by measuring the volume of water
displaced when a known volume of packed particles is immersed in water. The
internal angle of friction was assumed to be equal to the angle of repose, which was
estimated by pouring the particles on a rough horizontal plane from a fixed source.
The angle below which the heap stays unchanged at rest, and above which surface
motion downslope starts was considered as the internal friction angle. This angle is in
the range measured in other experimental studies with subspherical glass beads (e.g.
Balmforth & Kerswell 2005; Lajeunesse et al. 2005).

The experimental procedure can be summarized as follows. The glass beads are
poured into the reservoir without agitation or vibration. The channel is illuminated
with diffuse back lighting that provides a good contrast for video analysis, and a video
camera is carefully aligned along the horizontal direction. The gate is then manually
removed by suddenly lifting a rope to release the granular mass that spreads into the
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horizontal channel until it comes to rest, while the flow is recorded with the video
camera acquiring 50 frames per second. Finally, the resulting movie is processed with
Matlab R© in order to obtain series of the free surface and the front position of the
granular flow. This procedure was conducted twice for each experiment.

As in the numerical simulations the effect of gate removal is not considered, we
verified that it is negligible as the time for opening was ∼0.1 s, which corresponds
to less than about 5 %–10 % of the typical duration of the experiments in water and
air, respectively. We also verified the error in the procedure obtaining ± 0.05 m s−1 in
the front velocity, which corresponds to less than about 4 %–8 % of the typical front
velocity in air and water, respectively.

3.2. Numerical solution

Before discussing the numerical solution, two important properties of the system of
nonlinear second-order partial differential equations (2.29)–(2.31) should be noted.
First, as in the case of Navier–Stokes equations, it is not possible to define whether
the hyperbolic or parabolic feature of the momentum equations dominates, since
the ratio between the rate of convection of the flow to its rate of diffusion (the
Péclet number) is not known a priori. Then, the discretization method should handle
both convection and diffusion terms as a unit (Patankar 1980, pp. 79–80). Second,
the inviscid limit of these equations, in which momentum losses are not considered,
gives an ill-posed system of equations because some wave celerities acquire complex
values, i.e. the inviscid equations are non-hyperbolic, and the numerical solution shows
that small-scale phenomenon grows rapidly (Drew 1983; Stewart & Wendroff 1984;
Ystrom 2001). Then, viscous terms should be retained in order to have a well-posed
system of equations (Drew 1983; Ystrom 2001).

Based on this and on the fact that the pressure fields for both phases are not
known, we chose the implicit finite-volume pressure–correction scheme proposed by
Patankar (1980) for solving the momentum equations, which is an iterative procedure
for calculating the flow field through a way that improves the guessed pressure. This
procedure is based on the fact that the pressure field is indirectly specified via the
mass continuity equation, so that when the correct pressure field is substituted into the
momentum equations, the resulting velocity field satisfies the mass continuity equation
(Patankar 1980, pp. 124–126). To prevent numerical instabilities of the velocity field
associated with the central difference approximations, the convection and diffusion
fluxes were solved with the hybrid scheme, which is a combination of the central
difference and upwind schemes, and depends on the Péclet number (Patankar 1980,
pp. 88–90). Furthermore, we adopted a closed two-dimensional (vertical–longitudinal)
domain with a staggered Cartesian grid, in which the velocity components are
calculated for the points lying on the faces of the control volumes, which allows
to avoid the difficulties that arise when pressure and velocity fields are calculated at
the same location, such as a non-uniform pressure field (Patankar 1980, pp. 118–120).

Regarding to the boundary conditions, a zero mass flow across the walls was
considered for both fluid and solid phases because the domain was closed, so that
a normal velocity equal to zero was given as a boundary condition to both the
pressure-correction and the momentum equations. Additionally, the non-slip boundary
condition was considered for the fluid phase, so that the fluid velocity parallel to the
walls was equal to zero; and a zero momentum flux across the walls was assumed for
the solid phase, so that the gradient of the solids velocity parallel to the walls was
equal to zero, which means that solid particles can slip on the walls. Moreover, a wall
friction equal to the inner Coulomb friction tanϕ was assumed. Finally, as both mean
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and fluctuating fluid velocities were zero at the walls, the turbulent kinetic energy, k,
was also zero at the walls; in contrast, the dissipation rate ε should have been finite
(Rodi 1983, pp. 44–45). The usual way to treat the boundary conditions for ε is by
placing the boundaries out of the viscous wall boundary layer, where the flow is fully
turbulent, and assuming that the rate of production and dissipation of k are equal in
that point, which also required to know the flow velocity in that point (Rodi 1983,
pp. 44–45). The same methodology is no longer valid for two-phase flows because
there is not a clear definition of the wall viscous boundary layer within the grains;
then, we decided to impose ε = 0 at the boundary. Note that no specific treatment
of the free-surface boundary conditions of the granular flow is required, because the
proposed granular pressure closure (2.19) naturally creates interfaces as it induces the
fall of the particles while the flow is not packed, and because the properties of each
phase vary in space according to the volume fraction.

The final discretized equations are detailed in the Appendix, for which the solution
algorithm for one time step can be summarized as follows. (i) Start the calculation
of the fields at the new time step with the solution of the previous time step. (ii)
Solve the discretized momentum equations for the fluid phase. (iii) Solve the pressure-
correction equation for the fluid phase and correct fluid pressure and velocities
(under-relaxed). (iv) Solve the discretized momentum equations for the solid phase.
(v) Solve the pressure-correction equation for the solid phase and correct solid pressure
and velocities (under-relaxed). (vi) Solve the discretized conservation of mass equation
for the solid phase. (vii) Solve the discretized k − ε equations for the fluid phase. (viii)
Update collisional pressure and viscosity for the solid phase. (ix) With the new fields,
return to step (ii) until a converged solution for both the continuity and momentum
equations is satisfied to an acceptable tolerance (difference in velocity between two
successive iterations less than 1 mm s−1), for both the fluid and solid phases.

We solved numerically the six sets of experiments presented in table 1, for which
the range of initial column aspect ratio was extended up to 16. The horizontal
dimension of the computational domain, L, was fixed by the experimental facility
(i.e. L = 1.5 m); whereas the vertical dimension, H , was chosen as H = 2ho, as we
verified that for H larger than ∼1.5ho, the influence of the boundary condition at
the top of the computational grid was negligible. For simplification and because the
horizontal dimension of the domain was fixed, independent of the experiment, we
used a fixed grid size of Δx = Δy = 7.14 × 10−3 m (i.e. L/Δx =210) and a time step of

Δt = 2.5 × 10−3 s (i.e.
√

Lg−1/Δt = 156), such as Δx/Δt = 2.9 m s−1 was about twice
the maximum front propagation speed. The details of the numerical set-up for each
simulation are also summarized in table 1.

4. Results
4.1. Dynamics of the granular column collapse and spreading

In order to characterize the particular dynamics of the granular column collapse
and spreading, in figures 1–3, we present the results of laboratory experiments and
numerical simulations carried out in air or water with grains size of 3 mm in diameter
and columns with ho/xo = 3.

Figure 1(a,f ) shows frames of the dimensionless solid pressure, p̃s , the streamlines
of the granular flow and a comparison of measured and computed, c−1

o

∫ H̃

0
cs(x̃, ỹ)dỹ,

free surface of the granular flow, for three dimensionless times t̃ . Figure 1(g) compares
time series of p̃s at the left bottom corner of the column and the column height at the
left top, yT /ho. Finally, a comparison between measured and simulated time series
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Figure 1. Frames of p̃s (contours), streamlines of the granular flow (→→) and experimental

(——–) and computed c−1
o

∫ H̃

0 cs(x̃, ỹ)dỹ (– – –) free surface, for the collapse of grain columns

with ds = 3 mm and ho/xo = 3 in air at (a) t̃ = 0.5, (b) t̃ = 1.0, (c) t̃ = 3.0 and in water at
(d ) t̃ =0.75, (e) t̃ = 1.5, (f ) t̃ = 6.0. (g) Time series of p̃s at the left bottom corner of the
column (——–), and column height yT /ho at the left top (– – –), in air (light lines) and
water (dark lines). (h) Comparison between simulated (——–) and measured (◦) time series
of (xF − xo)/ho, in air (light line) and water (dark line).

of the dimensionless front position, (xF − xo)/ho, is shown in figure 1(h). Figure 1
illustrates the mechanisms of the granular collapse. The granular flow is first driven by
the horizontal solid pressure gradient; however, the wall boundary condition curves
the streamlines and tilts the isobars, inducing the fall of the top of the column where
solid pressure is equal to zero (figures 1a and 1d ). The vertical collapse progressively
increases the solid pressure at the base of the column (figure 1g), thus transferring
vertical to horizontal solid-phase momentum (figures 1b and 1e). As a consequence,
the flow is mostly non-hydrostatic since p̃s is different than yT /ho (figure 1g). Finally,
the granular motion ends in a static state because of the Mohr–Coulomb condition
(figures 1c, 1f, and 1h).

Figure 2 shows contour graphs of the dimensionless solid and fluid velocities, ũs ,

ũ f , kinetic energy of the fluid turbulent motion, k̃, and granular temperature, T̃ , in air
at t̃ = 1.5 (left panels) and in water at t̃ = 2.0 (right panels). It is observed static and
dynamic regions of the granular flow due to the Mohr–Coulomb condition (figures
2a and 2b), with a surface above which material slides down and below which grains
remain almost static, while in the front area the movement can be described as a
plug-like flow. Furthermore, the movement of the surrounding fluid is induced by the
solid particles through two mechanisms: drag interactions and volume interchanges.
On the one hand, the drag force induces about the same fluid velocity as the solid
particles (magnitude and direction), except at the walls where the fluid velocity is
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Figure 2. Numerical results of grain columns with ds = 3 mm and ho/xo = 3 in air at t̃ = 1.5
(left panels) and water at t̃ =2.0 (right panels). Spatial variation of the magnitude (contour)

and direction (arrows) of ũs (a,b) and of ũ f (c,d ). Contour graph of k̃ (e,f ) and T̃ (g,h),
and horizontal dimensions of CV , δx/ho = 0.3 (g,h). The black solid line represents the

dimensionless free surface of the granular flow, c−1
o

∫ H̃

0 cs(x̃, ỹ)dỹ.

constrained by the no-slip fluid boundary condition (figures 2c and 2d ). On the other
hand, because of the volume continuity (cs + cf = 1), the ambient fluid occupies the
space left by the solid particles, thus generating the large fluid recirculation patterns
shown in figures 2c and 2d. Finally, fluid turbulence is generated in the whole granular
flow and is transported by the fluid to zones where there are no solid particles (figures
2e and 2f ), whereas granular temperature is generated mainly at the free surface of
the granular flow (figures 2g and 2h). As a consequence, the eddy viscosity of the
fluid phase, μT , acts in a much larger volume than the collisional viscosity of the solid
phase, μc, so that fluid turbulence is expected to be more important than particles
collisions, although Ref ∼ Rec ∼ 100.

The dimensionless front position in figure 3(a,b) shows the well-known acceleration,
constant velocity and deceleration regimes, which characterize the dynamics of
granular column collapses (e.g. Lajeunesse et al. 2005; Lube et al. 2005). To
understand the constant velocity regime, the force balance at the front was studied
by integrating (2.30) in the Lagrangian control volume, CV , defined between
x̃ = (xF − δx)/ho and x̃ = xF /ho, and the whole vertical domain (δx is defined in
figures 2g and 2h, and δx/ho = 0.3). The horizontal solid-phase momentum equation
(2.30) was written for the Lagrangian coordinates t̃ ′ = t̃ , ỹ ′ = ỹ and x̃ ′ = x̃ − ũF t̃ ,
with ũF = uF /uo constant. Figure 3(c,d ) shows the time series of volume-integrated
dimensionless terms of the horizontal solid-phase momentum equation: Lagrangian
momentum advection (−∂x̃′[ρ̃s(ũs − ũF )ũs]), solid pressure gradient (−∂x̃′ p̃s), Coulomb
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Figure 3. Results of grain columns with ds = 3 mm and ho/xo = 3 in air (left panels)
and water (right panels). (a,b) Measured (◦) and simulated (——–) time series of
(xF − xo)/ho. (c,d ) Temporal variation of the horizontal forces integrated over CV : advection
−∂x̃ ′ [ρ̃s(ũs − ũF )ũs] (—×—), solid pressure gradient −∂x̃ ′ p̃s (—◦—), Coulomb friction
sxy∂ỹ ′ p̃stanϕ (—•—), collisional pressure gradient −∂x̃ ′ p̃c (—�—), collisional shear stress

∂x̃ ′ [2Re−1
c ∂x̃ ′ ũs]+ ∂ỹ ′ [Re−1

c (∂ỹ ′ ũs + ∂x̃ ′ ṽs)] (—�—), fluid pressure gradient −Decs/co∂x̃ ′ p̃f (– – –)

and drag force
√

De ho/(Ar ds)K̃/co[ũf − ũs] (——–). Shaded areas correspond to the constant
velocity regime.

friction (sxy∂ỹ′ p̃stanϕ), collisional pressure gradient (−∂x̃′ p̃c), collisional shear stress
(∂x̃′[2Re−1

c ∂x̃′ ũs]+∂ỹ′[Re−1
c (∂ỹ′ ũs +∂x̃′ ṽs)]), fluid pressure gradient (−Decs/co∂x̃′ p̃f ) and

drag force (
√

De ho/(Ar ds)K̃/co[ũf − ũs]). Note that because Lagrangian momentum
advection is calculated with a constant front speed, this is only valid in the constant
velocity regime (shaded areas in figure 3).

The temporal variation of the horizontal forces integrated over CV shows that the
force balance, for the case of the larger particles considered, is described mainly by
the balance between horizontal pressure gradient and Coulomb friction (figures 3c
and 3d ); however, as shown in the following sections, the relative importance of these
forces on the balance changes as a consequence of the particle diameter and fluid
properties.

4.2. Role of the solid pressure and Coulomb friction

In order to identify the solid pressure and Coulomb friction effects on granular flow
dynamics, we carried out two types of numerical experiments without both fluid
and particles collisions, either with or without Coulomb friction. The results of the
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Figure 4. Results of numerical experiments without fluid and particles collisions.
(a) Dimensionless front speed uF /

√
gxo and (b) ratio he/ho, as a function of ho/xo, for

both sets with (•) and without (�) Coulomb friction. (c) Dimensionless runout distance,
(x∞ − xo)/xo, as a function of ho/xo, for the case with Coulomb friction (•).

dimensionless front speed in the constant velocity regime, uF /
√

gxo, as a function
of ho/xo, are presented in figure 4(a). They show that, as expected from energy
considerations, the front speed for the frictionless case is larger than that for the
case with friction. Moreover, whereas uF depends on ho/xo for the frictional case
(figure 4a), uF ≈

√
2gho in the case without friction, which corresponds to the speed

of free fall of the grains from a high ho. Thus, for the frictionless case, the solid
pressure deviates the motion of the granular flow without influencing its speed. As
a result, in order to quantify the Coulomb friction effect, we define an equivalent
height, he, as

he = he(tanϕ, ho/xo) =
u′2

F

2g
, (4.1)

where u′
F refers to the front speed without fluid and particles collisions. The ratio

he/ho and the dimensionless runout distance, (x∞ − xo)/xo, as a function of ho/xo,
are shown in figures 4(b) and 4(c), respectively. Both curves show a break in slope at
ho/xo ≈ 3, and the runout distance is in quite good agreement with the experimental
scaling laws found by Balmforth & Kerswell (2005), Lube et al. (2005) and Lajeunesse
et al. (2005), among others. These numerical experiments show that the physical origin
of the break in slope for the dimensionless runout distance is the Coulomb friction
(tanϕ); however, the two-dimensional non-hydrostatic feature of the flow complicates
the analysis, so that it is not possible to obtain a direct algebraic expression to
compute neither he/ho nor (x∞ − xo)/xo as a function of tanϕ.
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Figure 5. (a) Results of dimensionless front speed, uF /
√

g′xo, as a function of ho/xo, for
experiments of table 1: set 1 (�), set 2 (�), set 3 (�), set 4 (∇), set 5 (�) and set 6 (�). White
and black marks are numerical and experimental results, respectively. The dashed lines were
obtained by multiplying the results curve without fluid and particles collisions (——–) by the
factor indicated. (b) Froude number, Fr = uF /

√
2g′he , as a function of log10(Ar/De2 + 1), for

the six sets of experimental measurements of table 1 (�). The best fit is represented by the
solid line that preserves the physical limits Fr = 0 for γs = γf , and Fr = 1 defined without
fluid.

4.3. Role of the ambient fluid

The six sets of experiments summarized in table 1 are used for studying the role of
the ambient fluid on the granular flow dynamics. We chose the front speed in the
constant velocity regime to describe the granular flow because it is more sensitive to
the ambient fluid effects. Figure 5(a) shows a comparison of simulated and measured
dimensionless front speed, uF /

√
g′xo, as a function of ho/xo, for the six sets of

experiments. A good agreement is observed without fitting any parameter on the
model, thus validating the system of governing equations proposed. Furthermore, the
results of figure 5(a) suggest that the dependence between uF and ho/xo obtained for
the case without fluid is also present when the ambient fluid is considered. This is
shown in figure 5(a) by the dashed lines that were obtained by multiplying the results
curve obtained without fluid and particles collisions (black solid line) by a factor that
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Figure 6. Numerical results of grain columns with ds = 0.7 mm and ho/xo = 8 in air at t̃ = 2.0
(left panels) and water at t̃ = 3.5 (right panels). (a,b) Contours of cs with the streamlines of

fluid velocity (→→). (c,d ) Contours of p̃s , computed free surface c−1
o

∫ H̃

0 cs(x̃, ỹ)dỹ (– – –),
non-hydrostatic fluid pressure at the bottom of the reservoir dimensionless by coγsg

′ho (——–)
and horizontal dimensions of CV , δx/ho =0.3. (e,f ) Dimensionless horizontal fluid velocity,

ũf (− · − ·), and drag force,
√

De ho/(Ar ds)K̃/co[ũf − ũs] (→), profiles in the front area.

fits each set of experiments. Therefore, the front speed can be written as

uF = Fr
√

2g′he, (4.2)

where Fr is a Froude number, and he is calculated from the numerical experiments
without fluid and particles collisions (4.1). On the other hand, in the dimensional
analysis of § 2, the dimensionless groups that weight the interaction terms of (2.30)

were introduced: De, Ar , cs/co,
√

ho/ds and K̃/co. The last three groups depend on
the initial and boundary conditions, and from figure 5(a) they are contained in he, at
least for the laboratory scale considered. Thus, Fr = Fr(De, Ar) only depends on the
solid particle diameter and fluid properties. Experimental front velocities are used to
test this hypothesis, and figure 5(b) shows the best-fit curve that relates Fr and one
function of De and Ar , preserving the physical limits Fr = 0 for γs = γf and Fr =1
defined without fluid.

Note that even if the front speed is made dimensionless with g′, the ambient
fluid effects cannot be restricted to the buoyancy force (figure 5), and it is required
to analyse the hydrodynamic fluid pressure and drag interactions to characterize
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Figure 7. Results of grain columns with ds = 0.7 mm and ho/xo = 8 in air (left panels)
and water (right panels). (a,b) Measured (◦) and simulated (——–) time series of
(xF − xo)/ho. (c,d ) Temporal variation of the horizontal forces integrated over CV : advection
−∂x̃ ′ [ρ̃s(ũs − ũF )ũs] (—×—), solid pressure gradient −∂x̃ ′ p̃s (—◦—), Coulomb friction
sxy∂ỹ ′ p̃stanϕ (—•—), collisional pressure gradient −∂x̃ ′ p̃c (—�—), collisional shear stress

∂x̃ ′ [2Re−1
c ∂x̃ ′ ũs]+ ∂ỹ ′ [Re−1

c (∂ỹ ′ ũs + ∂x̃ ′ ṽs)] (—�—), fluid pressure gradient −Decs/co∂x̃ ′ p̃f (– – –)

and drag force
√

De ho/(Ar ds)K̃/co[ũf − ũs] (——–). Shaded areas correspond to the constant
velocity regime.

accurately the role of the ambient fluid on granular flow dynamics. Therefore, it is
instructive to examine in more detail the spatial and temporal variation of quantities
involved in the balance of forces at the front.

Figure 6 shows the results of columns with ho/xo = 8 and grains of 0.7 mm, in air
at t̃ = 2.0 (left panels) and in water at t̃ = 3.5 (right panels). This figure synthesises
the role of the ambient fluid. The grains are not packed at the front (figures 6a and
6b) because their weight is held by both hydrostatic and hydrodynamic fluid pressure
(figures 6c and 6d ). Thus, the solid pressure as well as the Coulomb friction is zero in
this area (figures 6c and 6d ). This effect is larger in water than in air, suggesting that
the magnitude of the fluid pressure fluctuations depends on the fluid density, that
is, it is described by De. Even when there is no Coulomb friction at the front, the
solid-phase movement may decelerate, as the increase of fluid pressure is caused by
momentum transfer through drag interactions, and because the no-slip fluid boundary
condition imposes small speed regions near the walls (figures 6e and 6f ).

Figure 7(a,b) shows measured and simulated time series of (xF − xo)/ho, and
figure 7(c,d ) shows the time series of volume-integrated dimensionless terms of the
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Figure 8. Results of uF /
√

g′xo as a function of ho/xo, for set 3 (�) and set 6 (◦) of table 1.
White and grey marks are numerical results with and without fluid turbulence, respectively, and
black marks are experimental measurements. The dashed lines were obtained by multiplying
the results curve without fluid and particles collisions (——–) by the factor indicated.

horizontal solid-phase momentum equation for the experiments presented in figure 6.
The temporal variation of the horizontal forces shows that the force balance is
described by different interacting forces that depend on the nature of the ambient
fluid. In air, the movement is mainly driven by solid pressure gradient, while Coulomb
friction (and drag to a lesser extent) counteracts the movement (figure 7c). In contrast,
the movement in water is mainly driven by momentum advection (and fluid pressure
gradient to a lesser extent), while drag counteracts the movement (figure 7d ). The
deceleration phase starts when solid pressure gradient is not large enough against
Coulomb friction in air (figure 7c), and when advection is not large enough against
drag in water (figure 7d ). In both cases of air and water, the granular motion ends in
a static state owing to Coulomb friction.

An important issue of the model that deserves a further analysis is the turbulence
of the fluid-phase, as in both cases of air and water drag forces coupled with the
wall fluid viscous effects counteract the solid movement (figures 6e and 6f ), so that
near-wall viscous effects seem to be important. Figure 8 shows a sensitivity analysis
of the results for the smallest particles considered comparing simulations with and
without fluid turbulence. It is observed that the front speed increases considerably
if the fluid turbulence is not considered, with an increase in speed, calculated as
(u′′

F − uF )/uF with u′′
F being the front speed without turbulence, of about 32% in the

case of air and of about 100% in the case of water (figure 8). This sensitivity analysis
shows that apart from representing accurately the interaction mechanisms between
the phases, the dynamic of each phase has to be properly described.

5. Discussion
The two-phase equations for compressible granular flows derived in this paper

provide a straightforward way to take into account properly the main forces that
describe the solid-phase dynamics: the constituent stresses and the interaction forces
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with the ambient fluid. These equations cover the whole solid concentration range
between dense granular flows to suspended flows. In order to show that this theory
correctly represents the dynamics of two-phase flows, only values taken from the
literature for the various parameters of the conceptual model were used when doing
the comparison with the experimental measurements (figure 5a).

The particular dynamics of the collapse and spreading of a two-dimensional
granular column in air or water was successfully solved for a wide range of
column aspect ratios, ho/xo ∈ [1, 16]. A key feature of the governing equations
is the representation of the rate-independent quasi-static part of constituent stresses
of the solid particles defined by (2.19) and (2.20), which induces the fall of the
particles while the flow is not packed, and creates static and dynamic regions during
the granular column collapse because of the Mohr–Coulomb condition (figure 2).
Moreover, the inherent non-hydrostatic feature of the governing equations allows the
handling of the reported problem in the shallow water equations for high aspect
ratios (e.g. Larrieu et al. 2006).

By introducing he = he(tanϕ, ho/xo) from numerical experiments without fluid and
particles collisions (figure 4b), the effects of tanϕ and ho/xo were subtracted, allowing
the analysis of the role of the ambient fluid on gravitational granular flow dynamics.
Buoyancy is the direct and simplest consequence of the presence of an ambient fluid;
however, experimental measurements cannot be explained if the hydrodynamic fluid
pressure and drag interactions are not included in the analysis. In fact, fluid pressure
gradient and drag interaction terms in (2.30) are coupled and act on the granular
flow dynamics. This is shown in figure 5(b), in which the best fit for the experimental
measurements was found with a combination of De and Ar , which are dimensionless
numbers that weight the fluid pressure gradient and the drag terms in (2.30) at
the laboratory scale considered. The magnitude of the fluid pressure fluctuations at
the flow front is described by De, while the magnitude of the momentum transfer
by drag interactions is described by Ar . The combination of both dimensionless
numbers determines the dominant terms that describe the force balance during the
constant front velocity regime. In air, the dominant dynamical balance results from
solid pressure gradient and Coulomb friction (figure 7c), because the hydrodynamic
fluid pressure that results from volume interchanges and momentum transfer by drag
interactions, is not large enough to support the reduced weight of the solid particles
(figure 6c). In contrast, in the case of water in which the fluid pressure fluctuations are
larger, the local behaviour change to a dense suspension for the smaller particles (ds

equal to 0.2–0.7 mm), because the increase of momentum transfer by drag interactions
results in an increase of the hydrodynamic fluid pressure that finally support the
reduced weight of the solid particles (figure 6d ), thus resulting in the dominant
dynamical balance described by advection and drag forces (figure 7d ). Furthermore,
in cases of both air and water, drag forces coupled with the wall fluid viscous effects
counteract the solid movement (figures 6e and 6f ); in this context, fluid turbulence
is particularly important and has to be considered in the analysis (figure 8), that is,
the problem is taken back to fluid turbulence, which is a fundamental issue in fluid
mechanics.

As the interaction mechanisms cannot be restricted to buoyancy or volume
exchanges, arguments of low fluid density (Campbell 2006) or constant solid bulk
density (Hutter et al. 2005) are not enough to neglect the ambient fluid effects. For
instance, consider the case of a dense granular flow, for which particles collisions can
be ignored, immersed in a real fluid with very low material density (dry dense granular
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flows), the equations of motion for the solid phase (2.26) reduce to

∂ρsusi

∂t
+

∂(ρsusjusi)

∂xj

= ρs

gi

g
− ∂ps

∂xi

+ sij

∂ps

∂xj

tanϕ. (5.1)

Some features of dry dense granular flows can be deduced from these equations.
First, the motion depends neither on the fluid phase nor on the solid particle diameter.
Second, dry dense granular flows do not reach a uniform steady-state flow regime. If
this is the case, the left-hand side terms of (5.1) as well as the horizontal pressure
gradient are zero, resulting in the pressure distribution of the static case. If there is
motion, the only way to balance gravity and pressure forces is by flow acceleration.
As a consequence, to explain the widely reported uniform steady-state flow regime
of dry dense granular flows found in different experimental configurations (e.g. GDR
MiDi 2004; Forterre & Pouliquen 2008), an additional sink of momentum has to be
considered. Although particles collisions may provide the sink of momentum required
to balance gravity and pressure forces, the uniform steady-state flow regime for dry
dense granular flows can also be explained by drag forces that transfer momentum
from solid to fluid phases. This transfer indirectly allows the fluid turbulence to
contribute in the solid-phase force balance, as fluid turbulence decreases the fluid
velocity, thus increasing drag forces that finally counteract the gravity in the solid-
phase force balance. Furthermore, analyses made by Cassar, Nicolas & Pouliquen
(2005) and Forterre & Pouliquen (2008), without invoking explicitly the ambient fluid
effects, indirectly consider drag forces on the falling time scale of the particles used
to derive friction laws for uniform steady avalanches. That is, even with ambient air,
the fluid effects that are commonly ignored could become strong enough to explain,
for instance, the uniform steady-state flow regime.

The results presented in this article give insights into the influence of the interstitial
fluid effects on the dynamics of granular flows, which are one of the pressing concerns
listed by Campbell (1990, 2006). Further works will focus on heterogeneous (i.e.
polydisperse) gravitational granular flows and their associated segregation effects.
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Appendix. Numerical scheme
Each of the governing equations can be written in the general convection-diffusion

transport equation with source terms:

∂ρφ

∂t
+

∂(ρujφ)

∂xj

=
∂

∂xj

(
Γ

∂φ

∂xj

)
+ S, (A 1)

where ρ is the density, φ is the dependent variable, Γ is the diffusion coefficient and
S is the source term. The particular representation of each term in the context of the
governing equations (2.15)–(2.16) and (2.25)–(2.27) is listed in table 2.

Following Patankar (1980), each governing equation was discretized using both the
hybrid scheme (Patankar 1980, pp. 88–90) and the linearization procedure for the
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Equation ρ φ Γ S

(2.15) ρf k μT /σk μT (∂xj
uf i + ∂xi

ufj )∂xj
uf i + K |uf − us|2 − ρf ε

(2.16) ρf ε μT /σε c1εε/k[μT (∂xj
uf i + ∂xi

ufj )∂xj
uf i + K |uf − us|2] − c2ερf ε2/k

(2.25) γs cs - -
(2.26) ρs usi μc ρsgi − ∂xi

ps + sij ∂xj
pstanϕ − ∂xi

pc − cs∂xi
pf + K(uf i − usi)

(2.27) ρf uf i μf + μT ρf gi − cf ∂xi
pf − K(uf i − usi)

Table 2. Particular representation of the density, ρ, the dependent variable, φ, the diffusion
coefficient, Γ , and the source term, S, for each equation.

source terms (Patankar 1980, pp. 48–49). The final two-dimensional discretization
equation is written generically as

aP φP = aEφE + aWφW + aNφN + aSφS + b,

aE = ‖−Fe, De − Fe/2, 0‖, aW = ‖Fw, Dw + Fw/2, 0‖,

aN = ‖−Fn, Dn − Fn/2, 0‖, aS = ‖Fs, Ds + Fs/2, 0‖,

aP = aE + aW + aN + aS + ao
P − SP ΔxΔy + (Fe − Fw) + (Fn − Fs),

ao
P = ρo

P ΔxΔy/Δt, b = SCΔxΔy + ao
P φo

P ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A 2)

where the sub-index with the upper-case letter k = E, W, N, S refers to the quantities
evaluated at the node east, west, north, south of the central node P ; the sub-index
with the lower-case letter l = e, w, n, s refers to the quantities evaluated on the face
east, west, north, south of the control volume P ; the upper-index ()◦ refers to the
value of the quantities evaluated in the previous time step;‖ ‖ stands for the largest
of the quantities within it; SC and SP arise from the linearization of the source term
S = SP φP + SC; and the convective, Fl , and diffusive, Dl , fluxes are

Fe = (ρu)eΔy, Fw = (ρu)wΔy, Fn = (ρu)nΔx, Fs = (ρu)sΔx,

De = ΓeΔy/Δx, Dw = ΓwΔy/Δx, Dn = ΓnΔx/Δy, Ds = ΓsΔx/Δy.

}
(A 3)

Note that the source terms of the discretized momentum equations (2.26) and
(2.27) contain the pressure that is unknown (table 2), so that the mass continuity
equations have to be included in order to close the system of equations. For doing
this, we followed the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithm explained in detail in Chapter 6 of Patankar (1980). In this
methodology, the pressure and velocities are written as

p = p∗ + p′, u = u∗ + u′, v = v∗ + v′, (A 4)

where ()∗ denotes guessed values (or values of the previous iteration) and ()′ denotes
correction values. Using p∗, the velocities u∗ and v∗ are obtained by solving the
momentum equations. Then, the correction for the pressure p′ is obtained from the
pressure-correction equation given by (Patankar 1980, pp. 124–126)

aP p′
P = aEp′

E + aWp′
W + aNp′

N + aSp
′
S + b,

aE = ρedeΔy, aW = ρwdwΔy, aN = ρndnΔx, aS = ρsdsΔx,

de = Δy/au
e , dw = Δy/au

w, dn = Δx/av
n, ds = Δx/av

s ,

aP = aE + aW + aN + aS,

b = (ρo
P − ρP )ΔxΔy/Δt + (Fw − Fe) + (Fs − Fn),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A 5)
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where au
e , a

u
w and av

n, a
v
s are the corresponding coefficients that come from the u and

v momentum equations that are discretized in the east, west, north and south faces of
the control volume for the pressure equation. Finally, the corrections for the velocities,
u′ and v′, are computed with (Patankar 1980, pp. 124–126)

u′
e = de(p

′
P − p′

E), u′
w = dw(p′

W − p′
E), v′

n = dn(p
′
P − p′

N ), v′
s = ds(p

′
S − p′

P ). (A 6)

Note also that this procedure is applied to both solid and fluid phases separately,
and in the case of the solid-phase momentum equations (2.26), the inclusion of the
solid pressure closure (2.19) implies that the pressure-correction equation is applied
only at points where the flow is packed, that is, at points in which the flow is
incompressible.

Finally, it is important to mention that for solving the convection-diffusion equation,
two kinds of boundary conditions can be chosen: a given boundary value or a given
boundary flux. As the momentum equations are a particular case of this general
equation, the same boundary condition treatment applies to them as well. The only
difference is that for the pressure-correction equation an additional condition at the
boundary has to be given, which could be the pressure at the boundary (and the
normal velocity is then unknown) or the normal velocity at the boundary (and the
pressure is then unknown) (Patankar 1980, pp. 129–130).
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